Compliant-Leg Lander vs. Fixed-Leg Lander Concept: an analytical analysis

Bing C. Chen, Chia-Yen Peng Jet Propulsion Laboratory California Institute of Technology

Spacecraft Structures and Dynamics Group Spacecraft Mechanical Engineering Section Mechanical Systems Engineering, Fabrication and Test Division June 20-22, 2017

Outline

- Europa Lander Mission Concept
 - Opportunity and Challenges
- Evolution of Concept Lander Designs
 - Early Concept of Fixed-Leg Lander
 - Compliant-leg Lander on challenging terrains
- Case Studies
 - Fixed-Leg vs. Compliant-Leg Concept Landers
- Summary

Europa Lander Mission Concept

A NASA Lander for Jupiter's Icy Moon, Europa

- Provide direct measurement of surface materials along with a geophysical and geological understanding at a local scale
- Search for evidence of life on Europa
- Assess the habitability of Europa by directly analyzing material from the surface
- Characterize the surface and subsurface for future missions

Fig 3.5: NASA Europa Study 2016 Report Europa Lander Mission

Challenging Surface Terrains

- Europa surface full of geometric features: chaos terrain, impact craters, ringed basins, ridges, cliff, etc.
- Highest resolution picture of Europa from the Galileo mission ~6 m/ pixel
- Terrain knowledge of Europa is limited now and would be unchanged at launch
 - Updated terrain knowledge would be available en route to Europa

Smooth Area in the Icy World

- Smooth surface on the satellite image could be rough surface on human/lander Scale
- highly unlikely to find smooth areas at sub-meter scales
- Design a lander that could land in extremely rough terrain and still make relevant measurements

Devil's Golf (0.3m reliefs)

https://en.wikipedia.org/wiki/Devil's_Golf_Course

Mechanics: Safe Velocity Determination

V_{safe} is a measure of robustness of a lander to tip over and should be maximized

V_{safe} highly dependent on lander geometry and mass distribution:

maximizing Δy

Fix-Leg Pallet Lander

 V_{safe}

Lander Concept Evolution

Fix-Leg Pallet Lander

- "Pallet" lander
 - Wide base area
 - Low center of gravity

pallet 2 Time= 2.7950 Frame=0563

1.0 — Lander velocity along slope 0.5 — 0.5 — 0.5 — 0.0 — 0.5.5 — 7.0 — 8.5

Time (sec)

NASA Europa Study 2012 Report Europa Lander Artist's concept by Europa Study Team, 2012.

Pallet Lander Concept on Challenging Terrain

Adaptability is Critical

- Lander design for challenging terrain
 - Need to accommodate
 large terrain variation such
 as slope and relief
 - Maintain a leveled pose after landing
 - Maintain a stable position for sampling operations

Europa Lander Concept- Deorbit, Descent, and Landing

Notional Powered Descent Landing with Sky Crane

Compliant-Leg Lander Concept

- MSL-derived Sky Crane system to lower the lander to the surface via tethered bridles
- Stabilizer legs consist of joints conformal legs to adapt to unknown terrain as the Lander slowly descends
- Stabilizer legs locked in position to yield a stable lander configuration for science operation

Lander Spacecraft Conceptual Design

 Stabilizer legs can individually extend, conforming to local terrain feature to achieve a level lander body in a wide range of surface topographies

Would enable landing and sampling in a variety of terrains

Fig 10.3: NASA Europa Study 2016 Report Europa Lander Mission Concept

Case Study: Compliant Leg Lander

Land on 25-deg down Slope with Hard Stop

Fixed-leg vs. compliant leg Lander

Case Study: Compliant-Leg vs. Fixed Leg Lander

Land on Sloped Relief

Fixed-leg vs. compliant leg Lander

Case Study: Compliant Leg Lander

Summary

Fixed-Leg vs. Compliant-Leg Landers Concepts

- Conventional fixed-leg lander is an economical solution and can provide tip-over stability
 - Wide base area; Low center of gravity
 - May not be suitable for challenging terrains
- Compliant-leg lander can accommodate large terrain variations
 - Require powered descent landing with sky crane to maintain lateral coupling
 - Require choreographed timing sequences of legs locked in position to yield a stable lander configuration

Thank you

